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Introduction 

Studies conducted at Ames1r2 on midcourse 
navigation for  a circumlunar mission used l inear  
matrix operations fo r  t ra jec tory  determination and 
guidance. These operations require the  knowledge of 
"error coefficient" o r  "transition" matrices, which 
a re  the  matrices of f irst  p a r t i a l  derivatives of t he  
var ia t iona l  parameters at one time on a given r e fe r -  
ence t ra jec tory  with respect t o  those at  an earlier 
t i m e .  The var ia t iona l  parameters may be any se t  of 
variables which completely defines deviations from 
the  reference posit ion and velocity. 

This paper i s  concerned with the  problems 
involved i n  the  computation of the t rans i t ion  matri- 
ces.  The r e su l t s  presented a re  from a theore t ica l  
study conducted i n  an attempt t o  produce a simpler, 
though perhaps less accurate, method of computation 
than tha t  used previously. This a l te rna te  method 
i s  based on the  patched conic approach. Although 
the  r e su l t s  are inconclusive i n  many respects, it 
appears t ha t  t he  method can be used t o  advantage i n  
some cases. 

The work can be divided into four par t s  as 
follows: F i r s t ,  it i s  shown tha t  computation of the 
matrices i n  closed form using patched conic approx- 
imations i s  inherently l imited i n  accuracy, and tha t  
t h i s  accuracy is  considered inadequate fo r  lunar 
missions. Second, a numerical method i s  presented 
for  improving the  accuracy t o  an acceptable level.  
Third, e i the r  the  matrices f romthe s t r i c t l y  two- 
body computations o r  the  improved ones can be used 
for  midcourse guidance at  t he  expense of additional 
corrective velocity. 
pena l t ies  fo r  t he  improved and unimproved matrices 
are compared. Fourth, a quali tative evaluation of 
t he  computer t i m e  and storage requirements fo r  t h e  
approximate method is  presented. 

The magnitudes of the  velocity 

Theory 

A t  t h i s  point, a b r i e f  outl ine of the  method 
used fo r  computing the  t rans i t ion  matrices i n  the  
midcourse guidance studies mentioned e a r l i e r  will 
help t o  i l l u s t r a t e  t he  object of the  present study. 
The computation was car r ied  out using the  compo- 
nents of posit ion and velocity as var ia t iona l  param- 
eters; however, the same approach could conceivably 
be used with other var ia t iona l  parameters. The pro- 
cedure i s  as follows: A set of l inear  d i f fe ren t ia l  
perturbation equations is  obtained by expanding the 
vehicle 's  equations of motion about the  reference 
t r a j ec to ry .  
prescribed functions of posit ion on the  reference 
t ra jec tory ,  hence, of t ime .  The simultaneous in t e -  
grat ion of s ix  sets of these equations with appro- 
p r i a t e  i n i t i a l  conditions w i l l  y ie ld  the  desired 
matrices. The accuracy of t h i s  calculation is l i m -  
i t e d  only by the  accuracies of the  mathematical 
model and of t h e  numerical operations, but the  inte- 
grat ion is qui te  time consuming. In  addition, i f  a 
high precision numerical integration i s  used, a 
la rge  annunt of  computer storage may be required. 

The coefficients i n  the  equations are 

+ 
Use of Two-Body Approximation 

One approach t o  the  problem of SimpliDing the  
computation of the  matrices is t h e  use of tm-body 
approximations. That i s  if  the  t ra jec tory  is 
assumed t o  be a conic over a given t i m e  interval,  
then the  state vectors* at  the  i n i t i a l  and final 
times can be r e l a t ed  t o  each other i n  closed form. 
Hence, the  t rans i t ion  matrix over t h i s  in te rva l  can 
a l so  be found i n  closed form. If the  t o t a l t r a j e c -  
to ry  is  divided in to  n of these in te rva ls ,  then 
the  t rans i t ion  matrix re la t ing  perturbations from 
the  reference t ra jec tory  at  the f inal  time t o  those 
at the  i n i t i a l  time can be approximated by multiply- 
ing the  n individual two-body matrices together. 

A s  n i s  increased, t ha t  is,as the  s ize  of 
t he  in te rva ls  i s  reduced, the  individual conics 
become be t te r  approximations t o  the  ac tua l  t r a j ec -  
to ry .  Therefore, i f  no accuracy is l o s t  i n  t he  
numerical operations, t he  matrices are obtained with 
increasingly greater accuracy. 

There is ,  however, a l i m i t  t o  t he  accuracy 
which can be obtained by the  reduction of the  t i m e  
in te rva ls  over which the  reference t ra jec tory  i s  
approximated by individual conics. To i l l u s t r a t e  
t h i s  point, consider the l inear  perturbation equa- 
t ions  of motion 

j T = E  (1) 

where Z is  the  vector of perturbations from the  
reference t ra jec tory  and F is  a matrix of coeffi-  
c ien ts  which a re  functions of posit ion on the  re fer -  
ence t ra jec tory .  It can be shown tha t  the  t r ans i -  - 
t i o n  matrix, 5 ,  a l so  s a t i s f i e s  equation (1); tha t  i s  

'I 
i = F 5  (2) 

The matrix Q is defined as the  t rans i t ion  
matrix which would be obtained if  only  a s ingle  
homogeneous spherical  cen t ra l  body were present and 
Fc as the  value t h e  matrix F would have i n  such 
a case. The matrices Jr and F can then be 
defined by the  following equatyons: 

I 5 = c p + $  

F = Fc + Fp ( 3 )  

Equation (2)  can now be writ ten as 

but 

so 

4 = Fpcp + Fc$ + Fp$ ( 6 )  

*For the  present, "state vector'' w i l l  be 
defined as m y  set of s i x  variables from which the  
vehicle 's  instantaneous posit ion and velocity can 
be determined. 



Now consider the  case i l l u s t r a t ed  i n  the  sketch 
below. The reference t ra jec tory  is being approxi- 
mated by conics over a series of short t i m e  i n t e r -  
vals for t he  purpose of computing the  t r sns l t i on  

/tn 
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REFERENCE TRAJECTORY - 
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matrices. Here t E  i s  the  terminal reference time 
and to is  the  t i m e  of injection. The t rans i t ion  
matrix O(tn; tn-1) from tnmi t o  tn i s  written,  
fo r  convenience, as en and similarly for  Cp and 9.  

From equation (6) 

and Jln is t he  e r ror  i n  approximating the  transi- 
t i o n  matrix, #n, across the  nth in te rva l  with the 
matrix f++, computed from the  two-boay equations. 

For use later i n  t h e  paper, it i s  desired t o  
know the  limit approached by Jrn as n becomes 
very large, tha t  i s ,  as the  t i m e  in te rva l  approaches 
zero. The F matrices on any prac t ica l  t ra jec tory  
w i l l  be non-null and f i n i t e  if the  proper variables 
are chosen t o  describe the  t ra jec tory .  
since a t  t i m e  tn-,,.% i s  the  unit  matrix and 
$rn i s  the  nu l l  matrix, the  last two terms i n  the  
integrand become negligibly small with respect t o  
the  first as the  t i m e  in te rva l  is made very small. 
Thus, according t o  the  c lass ic  definit ion of t he  
in tegra l  

Therefore, 

l i m  Jrn = Fp(tn)At 
At-0 

where A t  = tn - tn-l. 

The t r ans i t i on  matrix, @E, re la t ing  deviations 
i n  t h e  state vector at  t i m e  t E  t o  those at  to 
can be writ ten i n  the  following form: 

@E ( ~ p n  + Sn)(pn-l + JTn-1)***(* + 9 2 ) ( ( ~ 1  + $1) 

( 9)  
I n  order t o  f ind  the  relationship between @E and 
its two-body approximation, it is  necessary t o  
expand equation (9).  Sett ing n equal t o  4 i s  
su f f i c i en t  t o  show the  form of the  expansion. 
t h i s  case 

I n  

@E = (P4(P3(P2(P1+((P4+Jr4)((P3+93)((P2+922) 91 
+(v4 + 9,) ((P3 + *3)?J2(P1 + (T, + *,)*3(P*'pl+ *,'p3(P2'Pl 

+ @,S3(P2(P, + J;'p3(P2'pl 

= v4'p3v*v1+ 04#30E*l + 0403Jr2(P1 

(10) 

Equation (10) can be generalized t o  n terms t o  
give 

n 

The second term on the  r igh t  represents t he  error,  
v(tE;to), i n  approximating the  t r ans i t i on  matrices 
over the  short in te rva ls  with two-body equations. 

A s  n i s  allowed t o  become very large, 
equation (11) becomes 

n 

Thus i n  the  l imi t  the error,  JrE, i n  approximating 
t h e  t rans i t ion  matrix approaches the  in t eg ra l  on the  
r igh t  hand side of equation (13). I n  order fo r  t h i s  
in tegra l  t o  y i e ld  the nu l l  matrix fo r  a l l  values of 
to the  integrand must be ident ica l ly  the  nu l l  
matrix. Since the  t r ans i t i on  matrices a re  Jacobians 
of the  var ia t iona l  parameters at  one t i m e ,  with 
respect t o  those a t  a previous t i m e ,  they must be 
nonsingular. Some of the  terms of t he  matrix F 
are the  second p a r t i a l  derivatives of t he  perturging 
potent ia l  function and, because of t he  form of tha t  
function, must be nonzero. For these reasons, t he  
integrand i n  equation ( i3 )  cannot be identically 
zero and $E must, i n  general, have nonzero terms. 
I n  other words, the in tegra l  i n  equation (13) repre- 
sen ts  a minimum error i n  approximating the  t r ans i -  
t i o n  matrices by closed-form computation. 

It is  of in te res t  t o  know what e f fec t  the  
reduction of t he  t i m e  in te rva ls  has on the  matrices 
from the  closed-form computation. 
t h e  closed-form matrix over the  nth in te rva l  
could be computed from 

From equation (5)  

tn-1 
where the  terms of the  matrix F, a re  calculated as 
functions of t he  state vector on the  approximating 
conic between tn-i and tn .  As t he  t i m e  in te rva l  i s  
made a rb i t r a r i l y  small, 'pn approaches i t s  i n i t i a l  
value, t h e  unit  matrix, and F, approaches the  
value which would be calculated using the  s t a t e  vec- 
t o r  on the  reference t ra jec tory  at t i m e  tn. From 
t h e  c lass ic  definit ion of t h e  in tegra l  

l i m  'pn = I + F& ( 14) 
n-wo 
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0 

where Fc is  evaluated on the reference t ra jectory.  
If ' p ~  is written as the  product t o  n matrices of 
the form i n  equation (14), then it can be expanded 
t o  give 

9 = 1 +Fc(t l )At  + F c ( b ) d t L ; t o ) A t  

+ Fc ( t 3 ) d t ~ ; t o ) A t  + Fc(tn)V(tn-i;to)At 

Hence, 

l i m  p~ =LtE Fc(t)cp(t;to)dt (15) 

is  evaluated on the re fer -  

n+m 0 

where 
ence t ra jectory.  
represents the  ultimate accuracy available, except 
i n  isolated for tui tous cases, from using closed-form 
equations t o  approximate the matrices. Therefore, 
t h i s  integral  is useful as a standard of comparison 
for  the  closed-form matrices computed using f i n i t e  
time intervals  . 
Computation of Matrices in  Closed Form 

'p( to)  = I and F, 
The integral  i n  equation (15) 

For convenience, t h e  two-body matrices were 
computed i n  closed form with the components of t h e  
Cartesian position and velocity used both as the 
var ia t iona l  parameters* and as the components o f  the  
s t a t e  vector. The procedure is one of l inear iza-  
t ion ,  as i n  the case of the  d i f fe ren t ia l  equations, 
which uses a Taylor se r ies  expansion i n  which a l l  
derivatives of higher than first order a re  neglected. 

The equations re la t ing  position and veloci ty  
at two points a re  m i t t e n  according t o  the  method 
of Laplace' and different ia ted.  
equations are: 

The closed-form 

J 
where Fo and Vg are-the i n i t i a l  position and ve l -  
oci ty  vectors R and V are  t h e i r  f i n a l  values, 
while 
i n i t i a l  posi t ion and velocity and of the  time in te r -  
v a l  being used. 

f ,  g, h, and b are  scalar functions of the  

The f i r s t  p a r t i a l  derivatives of t h e  above 
equation are: 

" 
*It is well t o  point out tha t   pine^^,^ has 

shown t h a t  t rans i t ion  matrices computed over long 
t i m e  arcs  become ill-conditioned as a resu l t  of sec- 
ular term and tha t  t h i s  d i f f icu l ty  can be reduced 
great ly  i f  var ia t ional  parameters different f rom the  
ones used here are chosen. No d i f f icu l ty  because of 
t h i s  phenomenon has been encountered i n  the Ames 
lunar s tudies ,  presumably because the t i m e  arcs  
involved have never exceeded about half an o r b i t a l  
period. Such ill-conditioning need not a f fec t  the  
comparison o f  resu l t s  from an approximate method 
and a m r e  accurate model, but it should be consid- 
ered i f  t h e  methood 16 t o  be incorporated into a 
navigation system. 

The vector p a r t i a l  derivatives i n  equation (17) a r e  
of  the  form 

l k  . . . . .  1 
The notation a n d m  indicates the  gradient 
with the components of position and velocity, 
respectively, used as independent variables, and I 
is the  3x3 unit matrix. The vector p a r t i a l  deriva- 
t i v e s  are  submatrices of the two-body t rans i t ion  
matrix which can be written: 

Improvement of Two-Body Matrices 

It w l l l  be shown l a t e r  tha t  with f i n i t e  time 
intervals  the error  in  the  matrices was considered 
unacceptable even though they compared favorably 
with the resu l t s  of equation (15) .  
was the  reason for  performing t h e  second par t  of the  
work, tha t  is, finding a means for  improving the 
approximation. The approach t o  t h i s  problem was t o  
perform an approximate integration of equation (7); 
tha t  i s ,  of 

This inaccuracy 

I f  Cartesian coordinates a r e  used, the  
matrices i n  equation (7) can be par t i t ioned i n  
the following form: 

c p =  

FP = Fp 
'p, ';I = 

3 0 

I n  t h i s  notaqion the  zeros are 3x3 nul l  matrices, 
and Fc and F are 3x3 matrices of p a r t i a l  deriva- 
t ives  of  acceyerations due t o  t h e  spherical cen t ra l  
body and of the  perturbing accelerations, respec- 
t ive ly .  The matrix J. i s  part i t ioned i n  a form 
corresponding t o  t h a t  of 9. 



Substituting equations (19) i n  equation (6) 
gives 

-ding equation (20) resu l t s  i n  I It, = 9, 

$2 = Jr, . -  
JI, = FpT, + pc'k, + Fp'V1 

i4 = FPV2 + Fc'cJr, + Fp$2 

so tha t  

(21) 

I f  4, and $2 are neglected, 

It is assumed tha t  t h e  accelerations i n  
equation (23) a r e  constant a t  t h e i r  average value 
over t h e  nth interval .  Since 'p, at t h e  begin- 
ning of the  in te rva l  i s  t h e  unit matrix and 
the  nul l  matrix 

'p2 is  

Equations (24) represent, In  par t i t ioned form, 
t h e  results of an approximate integration of equa- 
t i o n  (7). The perturbation matrices thus computed 
can be added t o  the  two-body matrices for  corre- 
sponding intervals  i n  order t o  improve the  approxi- 
mation. 

Evaluation of Accuracx 

The significance of the  inherent inaccuracy i n  
t h e  closed-form matrices and the  effectiveness of 
t h e  improvement have been judged on t h e  b a s i s  of a 
numerical example. Likewise, a comparison of t h e  
veloci ty  penal t ies  discussed ear l ie r ,  resulting from 
use of t h e  improved and unimproved matrices, was 
car r ied  out for t h e  same numerical example. This 
sect ion of the  paper describes the  method of evalu- 
a t ing  t h e  errors  i n  prediction and guidance, the 
e r ror  c r i t e r i a  used, and t h e  method of computing 
t h e  veloci ty  penalty. 

Method of evaluation.- The analysis of the 
accuracy of the approximate method is  carr ied out by 
comparison of t h e  approximate matrices with those of 
a "correct" solution. The correct solution i n  t h i s  
study is  assumed t o  be obtained by t h e  integrat ion 
of the  perturbation d i f fe ren t ia l  equations from a 
mathematical m d e l  considered suff ic ient ly  acc~-et+,e 
for  computing the  reference t ra jectory.  For deter-  
mination of the  errors  in  prediction, an error  
matrix, E, i s  found by subtracting t h e  approximate 
matrix f romthe  correct one. This e r ror  matrix i s  
par t i t ioned i n  t h e  form of equation (18). 

The matrix on the  extreme r igh t  indicates which of 
the  Ei corresponds t o  the error  i n  p a r t i a l  deriv- 
a t ives  of position with respect t o  i n i t i a l  position, 
position with respect t o  i n i t i a l  velocity, e tc .  For 
example, if an i n i t i a l  position deviation from t h e  
reference were multiplied by E l  t h e  resu l t  would 
be t h e  vector error  i n  predicting position deviation 
from the reference a t  the f i n a l  time. The Ei w i l l  
be referred t o  i n  the remainder of t h e  paper as t h e  
prediction error  matrices. 

It is also desired t o  know the  error  a r i s ing  
from using the approximate matrices for  guidance. 
For t h i s  purpose the  fixed time of arrival guidance 
l a w  from previous Ames studies1j2 will be used. 
t rans i t ion  matrix # from t h e  time of a velocity 
correction t o  the  terminal point i s  par t i t ioned i n  
the  form described previously 

The 

r -I 

# =  I O 1  Q2 I 
- L 

Then the velocity vector, ~ V G ,  t o  be gained is 

where 63 and 6v are  the  position and velocity 
deviations from the  reference t ra jec tory  a t  the time 
of the  correction. I f  0 ,  6R,and gV a r e  known 
exactly, the  position deviation,  RE, at the  end 
point a f t e r  the application of the  veloci ty  correc- 
t i o n  w i l l  be 

Using the approximate matrices, 'p, and 'p2, i n  com- 
puting the  velocity correction gives 

6& = (01 - 92'pg191)6E = B6E ( 28) 

The matrix B w i l l  be referred t o  as the  guidance 
error  matrix. 

The resu l t s  t o  be presented l a t e r  show tha t  as 
the  terminal point i s  approached, the  guidance errors  
resul t ing from use of the  approximate matrices 
become negligibly small. Therefore, a guidance 
error resul t ing from an e a r l i e r  correction can be 
eliminated at the  expense of a subsequent correction 
nearer the  terminal point. It i s  assumed tha t  t h i s  
second correction will be made at some time, to, 
when t h e  residual  error  will- be negligible. The 



deviations fromthe reference at t h i s  time will be 
given by E] @-'(t~;te) [z] (29) 

Similarly, the  velocity deviation, 
The t e r m i d  position deviation GE i s  given by 
equation (28). 
~ V E ,  can be shown t o  be 

where SR and the  matrix C a re  evaluated at the  
time of the  first correction. 

It is  shown i n  reference 2 that  if 0 i s  
part i t ioned as before, then 

I 4  -91 

Therefore, with 6E and S ~ E  substituted from 
equations (28) and T30) and the  subscript 1 added 
t o  indicate the  time of the  f i r s t  velocity correc- 
t ion,  

r 7 r  --L 

L J L  -1 

The second velocity correction is given by 

(33) 

where it is  understood t h a t  the  01 and 'pi  i n  
equations (32) and (33) are evaluated a t  the-time of 
the second correction. Values of 6R2 and SV, f o r  
subst i tut ion in to  equation (33) are  obtained from 
equation ( 32) . 

(34) 

If it i s  assumed tha t  the  second correction i s  made 
at a range where the  differences between the  correct 
and approximate matrices a r e  negligible, then equa- 
t i o n  (34) becomes 

(35) 
From equation (31) it can be shown tha t  

so tha t  

The matrix D w i l l  be referred t o  as the velocity 
penalty matrix. 

It is  d i f f i c u l t  t o  assess the  velocity penalty 
and the  errors i n  prediction and guidance by consid- 
er ing t h e  individual terms i n  the  matrix, and a s i m -  
p l e r  c r i t e r i o n  is needed. 
t o  multiply each matrix by i ts  transpose and compute 

One possibi l i ty  would be 

t h e  eigenvalues of the  resul t ing matrix. The square 
root of the  m a x i m u m  eigenvalue i n  each case would 
then represent the  maximum velocity penalty, predic- 
t i o n  error, or guidance error resul t ing from wing 
t h e  approximate matrices with a un i t  deviation from 
t h e  reference t ra jectory.  Instead of t h i s  maximum 
value, t h e  error  was represented by the  norm of the  
appropriate matrix became of the  computational aim- 
p l ic i ty .  Since the  norm is equal t o  t h e  square root 
of the  sum of the  eigenvalues, the  resul t ing infor-  
mation is eesent ia l ly  the same. 

An idea of the error  i n  prediction r e l a t i v e  t o  
t h e  t o t a l  predicted error  can be obtained bexp-ess- 
ing the  norm of the error matrices as percentages of 
the  norms of the  corresponding correct submatrices. 
The guidance error, due t o  use of the  approximate 
matrices, i s  a function only of the  i n i t i a l  position 
deviation. Therefore, a similar percentage e r ror  i n  
guidance can be found fromthe norm of t h e  guidance 
error matrix expressed as a percentage of the  norm 
of the  correct submatrix of p a r t i a l s  of position 
with respect t o  position. The velocity penalty i s  
a lso  a function only of the i n i t i a l  position devia- 
t ion,  so tha t  computation of a re la t ive  veloci ty  
correction penalty should involve only tha t  portion 
of the  i n i t i a l  correction a r i s ing  from position 
deviations from the reference. The c r i te r ion  used 
for t h i s  comparison is the r a t i o  of the  norm of the  
velocity penalty matrix t o  that of t h e  matrix 
computed at t h e  t i m e  of the i n i t i a l  correction. 

qi'cp,, 

Digital  computer study. - The accuracy was 
evaluated by means of a d i n i t a l  conmuter study of a 
sample moonko-earth t ra jectory.  The comput&ional 
methods are described here br ief ly .  The t ra jec tory  
has a f l i g h t  time of about 3-114 days from perilune 
t o  re turn perigee and l i e s  approximately i n  the  
moonts o r b i t a l  plane. 
long and therefore  allows t h e  perturbing forces not 
accounted for  i n  the two-body equations t o  have a 
re la t ive ly  large e f fec t .  
t h e  t rans i t ion  matrices obtained from integrating 
t h e  d i f fe ren t ia l  perturbation equations from a four- 
body model are taken as correct. This model includes 
t h e  second harmonic term of the  ear th 's  gravi ta-  
t i o n a l  potent ia l  as well as the vehicle, sun, earth, 
and moon. 

The f l i g h t  time is f a i r l y  

For comparison purposes, 

The two-body t rans i t ion  matrices were computed, 
as described i n  the  section on theory, both by in te -  
gration and i n  closed form. It was found be t te r  i n  
t h i s  computation t o  take a larger  sphere of inf lu-  
ence for  the  moon than the generally accepted value 
given by the  215 power of t h e  mass ra t ios .  The rea-  
son for  t h i s  can be seen i f  the  perturbation d i f f e r -  
e n t i a l  equations instead of the vehicle's equations 
of motion are  used t o  compute the  moonls sphere of 
influence. As a resu l t  of different ia t ion,  the  term 
representing t h e  action of the  cent ra l  body on t h e  
perturbing body disappears and the  perturbing acticns 
a r e  equal where t h e  accelerations due t o  the  two 
bodies are equal. I n  the one-dimensional case, t h i s  
equality occurs when t h e  r a t i o  of t h e  ranges t o  the 
two bodies i s  equal t o  the cube root of t h e  mass 
ratios. 

The integration for  both the reference t r a j e c -  
to ry  and the  perturbation equations uses a Cowell 
"second-sum'' method. A fourth-order Runge-Kutta 
method is used t o  start t h e  integrat ion and t o  
change s tep  s ize  during the  f l igh t .  
given i n  the  section on theory were used t o  compute 
t h e  conic approximations, and t h e  time intervals  
over which the  conic approximations w e r e  used were 

The equations 



chosen t o  coincide with an integral  number of 
intervals  from the Cowell integration. 

Results and Discussion 

The data resul t ing from the d i g i t a l  computer 
These resu l t s  wii l ,  stu* w i l l  IiOW be presented. 

f i r s t ,  indicate why t h e  unimproved two-body approx- 
imation is considered inadequate; second, show t h a t  
the suggested improvement is adequate; th i rd ,  com- 
pare t h e  velocity penalties resul t ing f romthe  use 
of improved and unimproved matrices. 

Accuracy of Unimproved Matrices 

The norms of the prediction error matrices 
resul t ing from integrating the  two-body perturba- 
t ion  d i f fe ren t ia l  equations along the reference tra- 
jectory are  presented i n  figure 1. 
error  matrices from equation (25) are indicated for  
t h e  appropriate curves. The prediction submatrix t o  
which t h e  error  matrix corresponds i s  a lso indicated 
along with the  uni ts  used. Note tha t  the  increase 
i n  prediction error ,  with range f romthe  earth, is 
approximately exponential. The norms of the corre- 
sponding submatrices of the  correct t rans i t ion  
matrices increase i n  a similar fashion with increas- 
ing range. 
i n  prediction exhibit a much less drast ic  increase. 

The prediction 

For t h i s  reason, the  percentage errors  

These percentages for  the  data jus t  presented 
a re  plot ted i n  figure 2. 
error  matrices E, and E, have been omitted because 
they a re  nearly ident ical  with those f o r  matrices 
El and E*, respectively. Note tha t  even though the  
error  i n  prediction increases continually with range 
from the  earth, the  percentage error  decreases near 
the  moon. This decrease occurs, of course, because 
t h e  norms of the  correct prediction submatrices 
increase more rapidly i n  t h i s  region than those of 
t h e  error  matrices. 

The curves f o r  prediction 

For the  closed-form computation of the two-body 
matrices the  time intervals  used were suf f ic ien t ly  
short t o  give resu l t s  close t o  those given by t h e  
integration. A single t i m e  interval  was satisfactmy 
for  ranges less than about 330,000 km, but for  t h e  
portion of the t ra jectory between tha t  range and 
perilune, it was found necessary t o  rec t i fy  more 
often. Intervals  of about 0.1 day were found t o  
give sat isfactory resu l t s  and were used over the 
en t i re  t ra jectory.  

The percentage errors  i n  prediction for  the 
closed-form computation a re  presented i n  figure 3.  
Comparison of these curves with those of  figure 2 
shows l i t t l e  difference i n  t h e  accuracy of t h e  two 
methods of  computation except i n  the  region of great- 
e s t  error .  The max imum percentage for  El from the  
closed-form computation is  about 13.5 percent as com- 
pared t o  12.5 percent for  the  integration. 

The norms of the  guidance error  matrices for  
the  t w o  methods of computation are  plot ted together 
i n  f igure 4. 
methods is  qui te  good a t  ranges beyond 2M),ooO km. 
The pronounced differences between the two curves a t  
t h e  shorter  ranges occur because the  ear th 's  oblate- 
ness causes larger  re la t ive  differences between the  
reference t ra jec tory  and t h e  conic approximtions. 
The e r rors  f o r  both methods a re  quite small i n  t h i s  
region and the  difference between the  two i s  not 
s ign i f icant  when t h e  guidance e r ror  i s  considered on 
a percentage basis as i n  f igure 5 .  

The correspondence between the tvo 

As i n  the  case of the  prediction error ,  the 
only noticeable difference between the  percentage 
errors  for  t h e  two methods of computation occurs 
near t h e  range of 350,000 h. The data i n  f igure 5 
indicate that the  two-body matrices could probably 
be used successfully f o r  guidance at ranges of l e s s  
than 250,OOO km. The large errors at longer ranges 
indicate  t h e  need for  a correction method such as 
was outlined e a r l i e r  i n  the paper. 
be presented w i l l  show t h e  improvement i n  accuracy 
resul t ing from use of t h e  correction method. 

The next data t o  

Accuracy of the  Improved Matrices 

The same 0 . 1  day time intervals  used f o r  the  
closed-form computation just  discussed were used t o  
compute the corrected matrices. It was found tha t  
including the  ear th 's  oblateness terms i n  the  cor- 
rect ion computation decreases ra ther  than improves 
the  accuracy unless the  t i m e  intervals  a re  great ly  
reduced near the e a r t h .  For t h i s  reason t h e  oblate- 
ness terms were omitted from t h i s  calculation, and 
the  resul t ing percentage errors  in  prediction are 
presented i n  f igure 6. In  t h i s  case a l l  the  errors  
are  less than 0.5 percent. The i r regular  form of 
t h e  curves is t o  be expected because of the asswnp- 
t ions  made i n  computing the corrections. These fluc- 
tuations, as well as the  average value, could be 
reduced t o  t h e  limits of computational accuracy by 
reduction of the t i m e  intervals  and inclusion of the  
ear th ' s  oblateness. 

The improvement i n  guidance accuracy r e s u l t i m  
f romthe  use of t h e  corrected matrices i s  i l l u s -  
t r a t e d  i n  figure 7. For comparison, t h e  norms of 
t h e  guidance error  matrices from the corrected and 
uncorrected closed-form computations are both pre- 
sented. EXcept a t  short ranges, where oblateness is 
a s ignif icant  factor ,  t h e  guidance error  i s  reduced 
by at leas t  an order of magnitude a t  every point. 
The percentage error  i n  guidance was also calculated 
using the  corrected matrices and was found t o  reach 
a maximum value of about 0.2 percent at a range of 
150,000 km. 

The Velocity Penalty 

The f i n a l  data t o  be presented compare the  
velocity penalties resulting from use of the  impmed 
and unimproved matrices. For the  puroose of com- 
puting the velocity penalty tha t  resul ted from using 
the  approximate matrices, it w a s  assumed tha t  the 
f i n a l  velocity correction would be made a t  the  short- 
e s t  range for  which data have been presented so f a r ,  
about 45,000 km. 
cussed i n  the  theory, that a t  t h i s  range the e r rors  
i n  the approximate matrices a re  negligible. 
norms of the  velocity penalty matrices computed a t  
t h e  longer ranges from the  closed-form t rans i t ion  
matrices, both corrected and uncorrected, a r e  pre- 
sented i n  figure 8. 
t i o n  required i s  quite small i n  both cases f o r  cor -  
rect ions made a t  ranges of less than 200,000 km. 
longer ranges, however, the penalty for  using the 
uncorrected matrices r i s e s  rapidly, while t h a t  for  
t h e  corrected matrices remains quite small. 

It was further assumed, as dis- 

The 

The additional velocity correc- 

A t  

The r a t i o  of the norm of t h e  velocity penalty 
matrix t o  tha t  associated with the i n i t i a l  correc- 
t i o n  is  plot ted i n  figure 9 f o r  both cases discussed 
above. Elimination of t h e  e r rors  a r i s ing  f r o m  t h e  
use of the approximate matrices a t  long ranges 
requires a velocity penalty of as much as seven 
times t h e  i n i t i a l  correction. 
addi t ional  corrections at intermediate ranges and 

Of course, t h e  use of 



t he  proper choice of a correction schedule, would 
reduce the  penalty from tha t  shown here. On the  
other hand, it seem apparent from these results 
that t h e  use of the  uncorrected two-body matrices 
Vi11 result i n  a subs tan t ia l  velocity penalty. The 
corrected matrices result i n  a maxim velocity 
geriltjy of s tout  5 pcrcent of t h e  i n i t i a l  correction 
and t h i s  penalty a l so   ma^ be reduced by proper 
scheduling. 

Qual i ta t ive  hraluation of Computer Requirements 

Finally,  it is desired t o  consider whether the  
use of t h e  approximate method has any advantages i n  
terms of required computer t i m e  and storage. 
study presented here was car r ied  out on an I B M  70% 
computer and t h e  IBM Fortran compiler. 
reason, any precise comparison of computer storage 
requirements i s  impractical, but some general con- 
clusions can be drawn. 

The 

For t h i s  

F i r s t ,  if a Cowell integration is  used for  t he  
reference t ra jec tory ,  it has been found i n  another 
Ames study that the  integration of t he  perturbation 
equations using a fourth-order Runge-Kutta method 
requires less storage than is needed for t he  closed- 
form computation of the  two-body matrices. No study 
has been conducted on the  accuracy of t h i s  integra- 
t ion ,  but a f e w  preliminary results indicate about 
t he  same accuracies as i n  the  corrected matrices 
described here. This integration requires qui te  
short s t ep  sizes ,  and fo r  t h i s  reason it consumes 
about four times as much computer t i m e  as  t he  
approximste method. The need fo r  such short  s teps  
indicates that it would be impractical t o  use t h i s  
simple Cowell integration of the  perturbation equa- 
t ions  i n  conjunction with an Encke integration of 
t he  reference t ra jec tory .  

In  the  case of an Encke integration of the  
reference trajectory,  it would be necessary t o  com- 
pute the  two-body matrices so tha t  only t h e  addi- 
t i ona l  computer capacity required t o  account fo r  
t he  perturbing accelerations needs t o  be considered. 
The Encke d i f f e ren t i a l  equations could be expanded 
i n  a Taylor se r ies  about the  reference t ra jec tory  
i n  order t o  get the  perturbation d i f f e ren t i a l  equa- 
t ions .  These equations could then be integrated t o  
give the  corrections t o  the  two-body t rans i t ion  
matrices. 
ously represents a simplification of t h i s  procedure, 
but a comparison of t h e  computer requirements could 
be arr ived at only by programming the  two methods. 
U s e  of t h e  correction method as described here will 
require approximately double the  storage needed for 
computing only t h e  two-body matrices. 

The correction scheme discussed previ- 

Conclusions 

The conclusions which have been drawn fromthe 
results of t he  study are l i s t e d  below: 

1. The t r ans i t i on  matrices computed i n  closed 
form using conic approximations t o  the  reference 
t r a j ec to ry  can be used fo r  midcourse guidance at 
the  expense of a subs tan t ia l  penalty i n  corrective 
Velocity. While t h i s  velocity penalty i s  large 
Compared with t h e  basic midcourse requirements, it 
might be acceptable in terms o f  the  over -a l l  
requirements of t h e  mission. 

2 .  The accuracy of t h e  two-body matrices can 
be improved t o  SlplDst any desired level at the  
expense of increased computer capacity and t i m e .  

The computation of these corrections approximately 
doubles the  computer capacity required over t h a t  
needed fo r  computing the  two-body matrices only. 

If a Cowell integration i s  used for t h e  3. 
reference t ra jec tory ,  the  approximate method appears 
t o  be ineericr on the  hasis c? c c z p t e r  storege 
requirements. 
subs tan t ia l  savings i n  time. 

The approximate method does show a 

4. Since an Encke integration of t he  reference 
t ra jec tory  would require computation of t he  two-body 
matrices, only the  addition& computer capacity 
required fo r  improving these matrices needs t o  be 
considered. The approximate method presented for 
improving the  matrices i s  actually an approximate 
method of integrating the  perturbed Encke differen- 
t i a l  equations, and therefore represents some sav- 
ing i n  computer capacity and time. 
more study would be required t o  evaluate t h i s  
savings. 

Considerably 
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FIGURE TITLES 

Figure 1. - Errors  from integration method. 

Figure 2. - Percent prediction errors from integration. 

Figure 3. - Percent prediction errors  from closed form. 

Figure 4. - Guidance errors  from two-body matrices. 

Figure 5. - Percent guidance errors  from two-body matrices. 

Figure 6. - Percent prediction errors from corrected matrices. 

Figure 7. - Comparison of guidance errors.  

Figure 8. - Velocity penalty. 

Figure 9. - Relative size of velocity penalty. 
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Figure 1. - Errors from integration method. 
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Figure 2. - Percent prediction e r ro r s  from integration. 
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Figure 3. - Percent prediction e r ro r s  from closed form. 
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Figure 4. - Guidance errors  from two-body matrices. 
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Figure 6. - Percent prediction errors from corrected matrices. 
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